湖北自考網(wǎng)旗下頻道:湖北高考網(wǎng)為考生提供湖北高考信息服務(wù) ,僅供學(xué)習(xí)交流使用,官方信息以湖北教育考試院為準(zhǔn)。

湖北自考網(wǎng)

湖北高考
高考首頁(yè) 高校信息 高考動(dòng)態(tài) 高考分?jǐn)?shù)線 特殊招生 高考作文 高考報(bào)考
高考專(zhuān)題:
湖北高考報(bào)名須知 考試時(shí)間 考試政策 考試大綱 考場(chǎng)查詢(xún) 成績(jī)查詢(xún) 錄取結(jié)果查詢(xún) 分?jǐn)?shù)線預(yù)測(cè) 招生簡(jiǎn)章 高考院校 報(bào)考答疑 高考百科
湖北高考網(wǎng) > 高考輔導(dǎo)資料 > 湖北高考數(shù)學(xué)輔導(dǎo) > 2014年湖北高考數(shù)學(xué)復(fù)習(xí):立體幾何學(xué)習(xí)方法網(wǎng)站地圖

2014年湖北高考數(shù)學(xué)復(fù)習(xí):立體幾何學(xué)習(xí)方法

來(lái)源:湖北自考網(wǎng) 時(shí)間:2013-09-29


湖北2014年高考數(shù)學(xué)復(fù)習(xí):立體幾何學(xué)習(xí)方法

 
 一、逐漸提高邏輯論證能力
  論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問(wèn)題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫(xiě)出。
  
二、立足課本,夯實(shí)基礎(chǔ)
  直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的證明在出學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。掌握好定理有以下三點(diǎn)好處:
  (1)深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
 ?。?)培養(yǎng)空間想象力。
 ?。?)得出一些解題方面的啟示。
  在學(xué)習(xí)這些內(nèi)容的時(shí)候,可以用筆、直尺、書(shū)之類(lèi)的東西搭出一個(gè)圖形的框架,用以幫助提高空間想象力。對(duì)后面的學(xué)習(xí)也打下了很好的基礎(chǔ)。
  
三、“轉(zhuǎn)化”思想的應(yīng)用
  我個(gè)人覺(jué)得,解立體幾何的問(wèn)題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒(méi)變,有什么聯(lián)系,這是非常關(guān)鍵的。例如:
 ?。?)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過(guò)空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
 ?。?)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
 ?。?)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
 ?。?)三垂線定理可以把平面內(nèi)的兩條直線垂直轉(zhuǎn)化為空間的兩條直線垂直,而三垂線逆定理可以把空間的兩條直線垂直轉(zhuǎn)化為平面內(nèi)的兩條直線垂直。
  以上這些都是數(shù)學(xué)思想中轉(zhuǎn)化思想的應(yīng)用,通過(guò)轉(zhuǎn)化可以使問(wèn)題得以大大簡(jiǎn)化。
  
四、培養(yǎng)空間想象力
  為了培養(yǎng)空間想象力,可以在剛開(kāi)始學(xué)習(xí)時(shí),動(dòng)手制作一些簡(jiǎn)單的模型用以幫助想象。例如:正方體或長(zhǎng)方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過(guò)模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對(duì)空間圖形的想象能力和識(shí)別能力。其次,要培養(yǎng)自己的畫(huà)圖能力??梢詮暮?jiǎn)單的圖形(如:直線和平面)、簡(jiǎn)單的幾何體(如:正方體)開(kāi)始畫(huà)起。最后要做的就是樹(shù)立起立體觀念,做到能想象出空間圖形并把它畫(huà)在一個(gè)平面(如:紙、黑板)上,還要能根據(jù)畫(huà)在平面上的“立體”圖形,想象出原來(lái)空間圖形的真實(shí)形狀??臻g想象力并不是漫無(wú)邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會(huì)給空間想象力插上翱翔的翅膀。
  
五、總結(jié)規(guī)律,規(guī)范訓(xùn)練
  立體幾何解題過(guò)程中,常有明顯的規(guī)律性。例如:求角先定平面角、三角形去解決,正余弦定理、三角定義常用,若是余弦值為負(fù)值,異面、線面取銳角。對(duì)距離可歸納為:距離多是垂線段,放到三角形中去計(jì)算,經(jīng)常用正余弦定理、勾股定理,若是垂線難做出,用等積等高來(lái)轉(zhuǎn)換。不斷總結(jié),才能不斷高。
  還要注重規(guī)范訓(xùn)練,高考中反映的這方面的問(wèn)題十分嚴(yán)重,不少考生對(duì)作、證、求三個(gè)環(huán)節(jié)交待不清,表達(dá)不夠規(guī)范、嚴(yán)謹(jǐn),因果關(guān)系不充分,圖形中各元素關(guān)系理解錯(cuò)誤,符號(hào)語(yǔ)言不會(huì)運(yùn)用等。這就要求我們?cè)谄綍r(shí)養(yǎng)成良好的答題習(xí)慣,具體來(lái)講就是按課本上例題的答題格式、步驟、推理過(guò)程等一步步把題目演算出來(lái)。答題的規(guī)范性在數(shù)學(xué)的每一部分考試中都很重要,在立體幾何中尤為重要,因?yàn)樗⒅剡壿嬐评?。?duì)于即將參加高考的同學(xué)來(lái)說(shuō),考試的每一分都是重要的,在“按步給分”的原則下,從平時(shí)的每一道題開(kāi)始培養(yǎng)這種規(guī)范性的好處是很明顯的,而且很多情況下,本來(lái)很難答出來(lái)的題,一步步寫(xiě)下來(lái),思維也逐漸打開(kāi)了。
  
六、典型結(jié)論的應(yīng)用
  在平時(shí)的學(xué)習(xí)過(guò)程中,對(duì)于證明過(guò)的一些典型命題,可以把其作為結(jié)論記下來(lái)。利用這些結(jié)論可以很快地求出一些運(yùn)算起來(lái)很繁瑣的題目,尤其是在求解選擇或填空題時(shí)更為方便。對(duì)于一些解答題雖然不能直接應(yīng)用這些結(jié)論,但其也會(huì)幫助我們打開(kāi)解題思路,進(jìn)而求解出答案。
結(jié)束
特別聲明:1.凡本網(wǎng)注明稿件來(lái)源為“湖北自考網(wǎng)”的,轉(zhuǎn)載必須注明“稿件來(lái)源:湖北自考網(wǎng)(trillionsbussines.com)”,違者將依法追究責(zé)任;
2.部分稿件來(lái)源于網(wǎng)絡(luò),如有不實(shí)或侵權(quán),請(qǐng)聯(lián)系我們溝通解決。最新官方信息請(qǐng)以湖北省教育考試院及各教育官網(wǎng)為準(zhǔn)!
高考最新文章 高考最新政策
考試交流群 獲取擇校方案
考試交流群

掃一掃加入微信交流群

與學(xué)姐學(xué)長(zhǎng)同城考生自由互動(dòng)

成考院校 自考院校 專(zhuān)升本院校 資格證 其它熱門(mén)欄目 最新更新